Как правильно переносить числа в уравнениях

Как правильно переносить числа в уравнениях

Решение линейных уравнений 7 класс


Рассмотрим другое уравнение. 5x = 4x + 9 По перенесем «4x» из левой части уравнения в правую, поменяв знак на противоположный.

Несмотря на то, что перед «4x» не стоит никакого знака, мы понимаем, что перед «4x» стоит знак «+».

5x = 4x + 9 5x = +4x + 9 5x − 4x = 9 Теперь и решим уравнение до конца. 5x − 4x = 9 x = 9 Ответ: x = 9 Запомните!

В любом уравнении можно разделить левую и правую часть на одно и то же число.

Но нельзя делить на неизвестное! Разберемся на примере, как использовать правило деления при решении линейных уравнений.

Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

Чтобы решить уравнение необходимо сделать так, чтобы при «x» стоял коэффициент «1».

Как переносить числа в уравнении

Получаем: Обратите внимание, что в нашем примере слагаемое — это выражение (−3x 2 (2+7x)). Поэтому нельзя отдельно переносить (−3x 2 ) и (2+7x), так как это составляющие слагаемого. Именно поэтому не переносят (−3x 2 ⋅2) и (7x).

Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑⋅2) и (−3×2⋅7x). Эти 2 слагаемых можно переносить отдельно друг от друга. Таким же образом преобразовывают неравенства: Собираем каждое число с одной стороны. Получаем: 2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным.

Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону. Тогда по одну сторону знака «=» оно сократится с тем, что было.

А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».

Это правило зачастую используется для решения линейных уравнений.

Правила переноса числа в уравнении

Для этого: Решение нелинейных интегро-дифференциальных уравнений типа (1) очень сложно и выходит за пределы нашего курса.

Мы ограничимся изучением только линейного дифференциального уравнения переноса: Если в уравнении (3) правая часть , то общее решение этого уравнения имеет вид бегущей волны: Смешанная задача Коши.

Зададим начальные и граничные данные на отрезках, показанных на рис. 55 жирными линиями: (отсюда видно, что с есть скорость переноса). Для определенности положим тогда волна бежит слева направо.

Вид решения (4) подсказывает, как можно корректно поставить полную задачу для уравнения (3). Этот способ построения точного решения легко обобщается на уравнение с переменным коэффициентом Он показывает, что для корректной постановки задачи необходимо, чтобы через любую точку области G проходила одна и только одна характеристика.

Это выполняется, если функция непрерывна во всей области ,

Основы алгебры/Правило переноса слагаемого

Но можно раскрыть скобку и получить два слагаемых: и .

Такие два слагаемых уже можно переносить по отдельности.

  1. Точно также можно преобразовывать неравенства. Например:
Рекомендуем прочесть:  Незаконная постройка сроки сноса

Перенесём все числа в одну сторону. В итоге имеем: или Две части уравнения по определению равны, поэтому можно вычесть из обеих частей уравнения одинаковое выражение, и равенство останется верным.

По одну сторону знака «равно» оно сократится с тем, что было.

По другую сторону равенства, выражение, которое мы вычли, появится со знаком «минус». Возьмём уравнение: Допустим мы хотим перенести все иксы из левой части уравнения в правую. Вычтем из обеих частей Слева сократится с , и иксов не останется. Справа сократится с , и останется : Теперь можно привести подобные слагаемые: Теперь нужно проверить, совпадают ли левая и правая части уравнения.
Заменим неизвестную переменную получившимся результатом:

Решение уравнений

Обычно в таком случае говорят, что обе части уравнения разделили на 5.

Второе уравнение: То же самое мы бы получили, если бы воспользовались правилом отыскания неизвестного множителя. Сделаем вывод: Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число.

Третье уравнение: Это уравнение можно переписать так: Следующее уравнение:

Сделаем вывод: Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак. И решим ещё одно уравнение: Чтобы решить уравнение, содержащее подобные слагаемые нужно: 1) слагаемые, содержащие переменную, перенести в левую часть уравнения, а числа – в его правую часть, не забывая при переносе менять знаки на противоположные; 2) привести

Правила переноса в уравнениях

Ответ очевиден, нужно разделить на « 4 ».

Используем правило деления и разделим левую и правую части уравнения на « 4 ».

Не забудьте, что делить нужно и левую , и правую части. Используем сокращение дробей и решим линейное уравнение до конца.

Часто в уравнениях встречается ситуация, когда при « x » стоит отрицательный коэффициент. Как, например, в уравнении ниже.

Чтобы решить такое уравнение, снова зададим себе вопрос: «На что нужно разделить « −2 », чтобы получить « 1 »?».

Нужно разделить на « −2 ». Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ? 1. Линейное уравнение Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна .

2. Линейное уравнение с одной переменной имеет вид: , где и – любые числа ; 3. 4. Тождественные преобразования Чтобы определить является ли уравнение линейным или нет, необходимо произвести тождественные преобразования:

Основы алгебры/Правило переноса слагаемого

Но можно раскрыть скобку и получить два слагаемых: и .

Линейное уравнение с двумя переменными имеет вид: , где , и – любые числа .
Такие два слагаемых уже можно переносить по отдельности.

  1. Точно также можно преобразовывать неравенства. Например:

Перенесём все числа в одну сторону.

В итоге имеем: или Две части уравнения по определению равны, поэтому можно вычесть из обеих частей уравнения одинаковое выражение, и равенство останется верным. По одну сторону знака «равно» оно сократится с тем, что было. По другую сторону равенства, выражение, которое мы вычли, появится со знаком «минус».

Возьмём уравнение: Допустим мы хотим перенести все иксы из левой части уравнения в правую. Вычтем из обеих частей Слева сократится с , и иксов не останется.

Рекомендуем прочесть:  Сколько действует бти

Справа сократится с , и останется : Теперь можно привести подобные слагаемые: Теперь нужно проверить, совпадают ли левая и правая части уравнения. Заменим неизвестную переменную получившимся результатом:

Мой секрет

Выполняем вычитание.

Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

240 + 320 = 80*7 Складываем числа, с другой стороны умножаем. Всё верно! Значит мы решили уравнение правильно! Пример уравнения для 4 класса со знаком минус.

Х – 180 = 240/3 Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз. Х – 180 = 80 (выделила цифры зеленым маркером). Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно.

Х в одну сторону, цифры в другую.

Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем. Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение.

Решение линейных уравнений 7 класс

Рассмотрим другое уравнение.

5x = 4x + 9 По перенесем «4x» из левой части уравнения в правую, поменяв знак на противоположный. Несмотря на то, что перед «4x» не стоит никакого знака, мы понимаем, что перед «4x» стоит знак «+».

5x = 4x + 9 5x = +4x + 9 5x − 4x = 9 Теперь и решим уравнение до конца. 5x − 4x = 9 x = 9 Ответ: x = 9 Запомните! В любом уравнении можно разделить левую и правую часть на одно и то же число.

Но нельзя делить на неизвестное!

Разберемся на примере, как использовать правило деления при решении линейных уравнений.

Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

Чтобы решить уравнение необходимо сделать так, чтобы при «x» стоял коэффициент «1».

Решение линейных уравнений 7 класс

Рассмотрим другое уравнение.

5x = 4x + 9 По перенесем «4x» из левой части уравнения в правую, поменяв знак на противоположный. Несмотря на то, что перед «4x» не стоит никакого знака, мы понимаем, что перед «4x» стоит знак «+». 5x = 4x + 9 5x = +4x + 9 5x − 4x = 9 Теперь и решим уравнение до конца.

5x − 4x = 9 x = 9 Ответ: x = 9 Запомните! В любом уравнении можно разделить левую и правую часть на одно и то же число.

Но нельзя делить на неизвестное! Разберемся на примере, как использовать правило деления при решении линейных уравнений.

Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.